

Welcome to your CDP Water Security Questionnaire 2023

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

AngloGold Ashanti is a multinational global gold mining company with a geographically diverse, world-class portfolio of operations and projects. Headquartered in Johannesburg, South Africa, AngloGold Ashanti is the fourth largest gold mining company in the world, measured by production. AngloGold Ashanti produced 2.742 million ounces of gold in 2022 - an estimated 2.1% of global production - making it the fourth largest gold producer in the world. AngloGold Ashanti operates 11 gold-producing operations located in 6 countries on three continents, and a group of greenfield projects in Colombia as well as AngloGold Ashanti's Silicon project in the United States of America which is supported by a focused exploration programme. These comprise mid to long-life, relatively low-cost assets with differing ore body types located in key gold-producing regions. AngloGold Ashanti currently operates in Argentina, Australia, Brazil, Ghana, the Republic of Guinea, and Tanzania. Several of these assets are strongly leveraged to energy costs and currencies. In addition, AngloGold Ashanti holds a material interest in 2 non-managed mines which are operated by B2Gold (Gramalote) and Barrick Gold Corporation (Kibali). We work across the full spectrum of the mining value chain and are concerned with the impact of our activities on the varied and many communities and environments in which we operate. Our goal is to create sustainable value for our shareholders, employees, and social partners through safe and responsible mining practices and capital discipline. Headquartered in Johannesburg, South Africa, AngloGold Ashanti's primary listing is on the Johannesburg Stock Exchange (ANG). It is also listed on the following securities exchanges: New York (AU), Australia (AGG) and Ghana (AGA).

W-MM0.1a/W-CO0.1a

(W-MM0.1a/W-CO0.1a) Which activities in the metals and mining and coal sectors does your organization engage in?

Activity	Details of activity
Mining	Gold
Processing	Gold

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

	Start date	End date
Reporting year	January 1, 2022	December 31, 2022

W0.3

(W0.3) Select the countries/areas in which you operate.

Argentina Australia Brazil Ghana Guinea United Republic of Tanzania

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

No

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

Indicate whether you are able to provide a unique identifier for your organization.	Provide your unique identifier
Yes, a Ticker symbol	JSE - ANGJ.J

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

	Direct use importance rating	Indirect use importance rating	Please explain
Sufficient amounts of good quality freshwater available for use	Neutral	Not very important	DIRECT USE: There are only a few production processes in operating mines that require good quality freshwater. These include air cooling and ventilation systems in underground mines, the gold elution circuits in gold extraction plants and WASH services for employees. The bulk of the water requirements can be met with poorer quality water. Often however, where there are limited poorer quality sources available, freshwater must be imported into the organisation to sustain operations, either in untreated form directly from rivers, lakes or potable quality freshwater is imported from utility water suppliers. INDIRECT USE: There are immaterial volumes of water contained in purchased products, being limited to liquid reagents that are purchased and where water is used as a carrier (e.g. acids, peroxide, liquid cyanide, etc.).
Sufficient amounts of recycled, brackish and/or produced water available for use	Vital	Not important at all	DIRECT USE: The bulk of operational water needs at our operations are met by reused water (up to 67%) within closed systems. Most operational processes can use very poor quality water and as a result, water losses incurred due to evaporation, phreatic water entrainment in tailings and seepage are preferentially made up by brackish and/or saline groundwater water sources. Where insufficient poor quality water is available to counter losses, fresh water must be imported. INDIRECT USE: There are immaterial volumes of water contained in purchased products, being limited to liquid reagents that are purchased and where water is used as a carrier (e.g. acids, peroxide, liquid cyanide, etc.).

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

	% of	Frequency of	Method of	Please explain
	sites/facilities/operations	measurement	measurement	
Water withdrawals – total volumes	100%	Monthly	Water withdrawal from different sources across the operation are aggregated on a monthly basis to determine total water withdrawals.	Total volume of water withdrawals is simply a periodic aggregation of the different withdrawal source volumes. These volumes are closely tracked for operational purposes and are reported to regulators and our external stakeholders in annual Sustainability reports.
Water withdrawals – volumes by source	100%	Other, please specify The frequency of measuring water withdrawals can vary by source from continuous flow meters installed at e.g., groundwater abstraction points to monthly totalizer readings at mechanical flow meters at remote lake/water	Water withdrawal measurements are undertaken through a variety of methods which include; calculation of volumes from pump capacity and running hours, through to mechanical and electronic flow meters. Sites can have a variety of these applications and	Operational sites measure water withdrawal across various sources in a variety of ways from continuous flow meters to daily or monthly measurements of certain withdrawal sources. In general, water accounting balances are run on a monthly basis, therefore regardless of

		dam pumping stations.	apply calibration checks from time to time.	their specific management measurement frequencies, all water withdrawals are aggregated on a monthly basis at minimum.
Entrained water associated with your metals & mining and/or coal sector activities - total volumes [only metals and mining and coal sectors]	100%	Daily	Entrained water is calculated by multiplying the total wet tonnage entering the production milling circuits by the percentage of moisture in the ore. The latter percentage is determined through laboratory analysis and periodic adjustments.	Determination of entrained water volume is critical to accurately accounting for the movement of gold through the process plant circuits.
Water withdrawals quality	100%	Other, please specify The quality of the water sources which we abstract from are very stable. Our process circuits are able to utilize very poor- quality water, treating poor quality water where it is needed for sensitive production processes	Source water quality checks will involve sampling and laboratory analysis for key parameters such as salinity, pH, TDS, macro and micronutrients and heavy metals.	Water source quality is typically determined at the outset of the mining project during permitting. There are periodic checks from time to time to confirm its quality remains within expectations. This is generally done informally.

		and/or human use.		
Water discharges – total volumes	100%	Monthly	Water discharge measurements are undertaken through a variety of methods which include; flume and weir water flow monitoring, through to mechanical and electronic flow meters. Sites can have a variety of these applications and apply calibration checks from time to time. Total water discharge volume is aggregated on an annual basis.	Total water discharge volume is aggregated on an annual basis and voluntarily published in our Sustainability report. Data collected during the discharge period is collated and reported externally to regulators at set intervals, in accordance with permit requirements.
Water discharges – volumes by destination	100%	Monthly	Water discharge measurements are undertaken through a variety of methods at the regulated compliance point. These can include; flume and weir water flow monitoring, through to mechanical and electronic flow meters. Sites can have a	Water discharges are regulated through water discharge permits/licenses and closely regulated and have been determined through a process of scientific study and stakeholder consultation. These often contain volume caps and water

	variety of these	quality limits for
	applications and	different
	apply calibration	parameters, in
	checks from	consideration of
	time to time.	the receiving
		water receptor's
	Water discharge	existing quality.
	permits or	Data collected
	licenses issued	during the
	by regulators	discharge period
	typically indicate	is collated and
	the permissible	reported
	location	externally to the
	(destination) of	regulators at set
	discharge.	intervals, in
		accordance with
		permit
		requirements. In
		addition to the
		discharge
		volume, the
		destination for
		each one is
		voluntarily
		reported
		externally on an
		annual basis (in
		our published
		Sustainability
		report).
		For example, our
		Sunrise Dam
		operation
		discharges nyper-
		saline water onto
		i ypically these
		remain fixed and
		water discharge
		at the permitted
		nointe je providad
		in reports to
		regulators along
		regulators along

Г

				with other pertinent discharge information.
Water discharges – volumes by treatment method	100%	Monthly	Water discharge permits or licenses issued by regulators typically indicate the water quality objectives that have to be met and the type of treatment is determined by the respective operational site. This may require either primary and secondary water treatment, in some instances advanced water treatment e.g., reverse osmosis is applied.	Water discharge permits or licenses issued by regulators typically indicate the type of treatment to be applied and/or water quality objectives that have to be met. This data is reported externally on an annual basis (in our published Sustainability report).
Water discharge quality – by standard effluent parameters	100%	Monthly	Water discharge permits or licenses issued by regulators indicate the permissible thresholds of various standard effluent parameters e.g. pH, conductivity, TDS and parameters of potential concern such as dissolved metals. These are determined	Water discharge permits or licenses issued by regulators indicate the permissible thresholds of various standard effluent parameters e.g. pH, conductivity, TDS and parameters of potential concern such as dissolved metals. Monitoring of these parameters

			through regulated sampling and analysis programmes, including frequency and applicable parameters.	is typically obligatory, as is provision of this information to regulators. Again, a reduced set of this data is reported externally in our annual Sustainability report.
Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)	100%	Monthly	Water discharge permits or licenses issued by regulators indicate the permissible thresholds of various standard effluent parameters (typically includes nitrated and phosphates) and any parameters of potential concern such as dissolved metals. These are determined through regulated sampling and analysis programmes, including frequency and applicable parameters.	Water discharge permits or licenses issued by regulators indicate the permissible thresholds of various standard effluent parameters and any parameters of potential concern. These do not typically include pesticides and priority constituents of concern tend to be dissolved metals. Monitoring of these parameters is typically obligatory, as is provision of this information to regulators.
Water discharge quality – temperature	51-75	Other, please specify	Where temperature of water being	Water discharge permits or licenses issued

		As per water regulatory requirements.	discharged is required, this is typically done with handheld equipment at the release point.	by regulators indicate the permissible thresholds of various standard effluent parameters e.g. pH, conductivity, TDS and parameters of potential concern such as dissolved metals. Monitoring of these parameters is typically obligatory, as is provision of this information to regulators. It is not however common to require temperature readings, hence this is not globally applied. The percentage reported here is
				reported here is an estimate.
Water consumption – total volume	100%	Yearly	Water consumption includes water permanently entrained in tailings storage facilities (interstitial water), plus evaporation. Accounting for these to any usable levels of accuracy is challenging,	Consumption data includes entrainment and evaporation is calculated at the site and company level on an annual basis. It is founded on the definitions for water consumption contained in the ICMM Water Reporting, Good

			therefore water consumption is determined by calculation, being the difference between the sum of inflows and outflows (discharges) from an operational site and adjusting for any annual change in storage (typically negligible over 12 months).	practice guide, 2nd Edition. The calculation method is used instead of the separate quantification of evaporation and entrainment, which is hampered by inherent inaccuracies.
Water recycled/reused	100%	Quarterly	Determined in accordance with the ICMM methodology, considering key tasks where previously worked water is being reused (based on MCA water accounting framework).	All active operational facilities account for recycled water volumes in accordance with the ICMM methodology (based on MCA water accounting framework). The data is collated and reported externally on an annual basis.
The provision of fully-functioning, safely managed WASH services to all workers	100%	Daily	Water for WASH services is either imported from a potable water supplier or raw water is treated on site, tested and then provided to all staff. This remains the	Access to fresh, safe water is a fundamental human right that we are committed to complying with and is in accordance with the Universal Declaration on Human Rights.

	accountability of	International Bill
	our internal	of Human Rights
	health services	and the
	staff.	International
		Labour
		Organisation
		(ILO) standards.

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

	Volume (megaliters/ye ar)	Compariso n with previous reporting year	Primary reason for comparison with previous reporting year	Five- year foreca st	Primary reason for forecast	Please explain
Total withdrawal s	61,631	Higher	Other, please specify Of the 10% YoY increase, 6% is from increased water diversions (per CDP definition, not used by operations). Marginal increase of 2% from higher rainfall and 3% from increased withdrawal from sources.	Higher	Increase/decrea se in business activity	Our water withdrawal data is aligned with the CDP Water guidance. This includes harvested rainwater and "Other Managed Water Withdrawals ." A large part of the year of the year of the year increase originates from Other managed water which is not utilised in production

						processes and cannot therefore be considered a relevant contributor to water use efficiency.
Total discharges	21,452	Higher	Other, please specify The 16% YoY increase is from increased discharge of water diversions (per CDP definition, not used by operations). Discharges from operational circuits remain flat from the previous year.	About the same	Other, please specify Despite an anticipated increase in business activity, new operations will be a zero- discharge site.	Our water discharge data is aligned with the CDP Water guidance. This includes "Other Managed Water Discharges. " The year on the year increase is due to Other managed water discharges which did not emanate from production processes and cannot therefore be considered a relevant contributor to the analysis.

Total	40,179	Higher	Increase/decrea	Higher	Increase/decrea	Additional
consumpti			se in efficiency		se in business	operating
on					activity	sites
						expected to
						come online
						in the next 5
						years.

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

	Withdraw als are from areas with water stress	% withdra wn from areas with water stress	Comparis on with previous reporting year	Primary reason for comparis on with previous reporting year	Five- year foreca st	Primary reason for forecast	ldentificati on tool	Please explain
Ro w 1	Yes	11-25	About the same	Other, please specify The data reported for 2022 remains unchang ed from the previous reporting year.	Higher	Increase/decre ase in business activity	WRI Aqueduct WWF Water Risk Filter	Two of our operatio ns are located in areas identified as being under water stress; in reality, these operatio ns have a significa nt proportio n of extraneo us fissure water draining

				into the
				operatio
				ns,
				reducing
				the need
				to import
				water
				from
				surface
				sources
				and
				water
				supply
				utilities.
				In
				addition,
				a new
				operatio
				n in a
				water
				stressed
				area is
				expected
				to come
				online
				within
				the 5-
				year
				period.

W1.2h

(W1.2h) Provide total water withdrawal data by source.

	Relevance	Volume (megaliters/year)	Comparison with previous reporting year	Primary reason for comparison with previous reporting year	Please explain
Fresh surface water, including rainwater, water from wetlands, rivers, and lakes	Relevant	33,883	Higher	Other, please specify Additional rainfall was received which elevates	Includes directly and indirectly harvested rainwater.

				fresh water withdrawals (using the CDP definition).	
Brackish surface water/Seawater	Not relevant				The water quality of our water withdrawals at our operating sites is not in exceedance of 10,000 mg/l TDS.
Groundwater – renewable	Relevant	16,882	About the same	Other, please specify Stable operating profile.	Includes high and low quality groundwater.
Groundwater – non- renewable	Not relevant				We do not tap into water at these depths and we currently do not have a need to.
Produced/Entrained water	Relevant but volume unknown				Water entrained with the ore arriving at a processing plant includes a percentage of moisture and a proportion of the recirculating process water balance. The extent between mines can vary significantly, depending on the geology and the mine type. For example, hard rock mining tends to have very

					limited naturally occurring water, with most being added through mining activities. The percentage of entrained moisture is estimated in the site level water balance and, included in the Groundwater Withdrawal numbers. At the corporate aggregation level, we are unable to quantify the volume of entrained water.
Third party sources	Relevant	27	Lower	Other, please specify Lower demand during the calendar year.	One of our operating sites makes use of third party for sensitive operations and human consumption.

W1.2i

(W1.2i) Provide total water discharge data by destination.

	Relevan ce	Volume (megaliters/y ear)	Comparis on with previous reporting year	Primary reason for compariso n with previous reporting year	Please explain
Fresh surface water	Relevant	21,002	Higher	Other, please specify	Our water discharge data is aligned with the CDP Water guidance. This includes "Other

Brackish surface water/seaw ater	Relevant	450	About the same	The 16% YoY increase is from increase d discharg e of water diversion s (per CDP definition , not used by operatio ns). Discharg es from operatio nal circuits remain flat from the previous year. Other, please specify Stable operatio ns	Managed Water Discharges." The year on the year 16% increase is due to Other managed water discharges which did not emanate from production processes and cannot therefore be considered a relevant contributor to the analysis. The single operation that discharges saline water onto a salt lake maintains fairly stable operational throughput and generates similar volumes of
Groundwate	Relevant but volume unknown				We do not undertake aquifer re- injection but do experience diffuse seepage losses to groundwater from water task areas. These volumes are challenging to accurately quantify at the corporate aggregation level. Our definition of Consumption includes "Other Task Losses" which also accounts for diffuse seepage losses to groundwater. See our 2022 Interactions with Water infographic at: https://reports.anglogoldashanti.co m/22/sr/
Third-party destinations	Not relevant				Our operations do not provide water to third-parties.

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

	Relevan ce of treatme nt level to discharg e	Volume (megaliters/ye ar)	Comparis on of treated volume with previous reporting year	Primary reason for compariso n with previous reporting year	% of your sites/facilities/operat ions this volume applies to	Please explain
Tertiary treatment	Relevant	3,615	About the same	Other, please specify Consisten t operation al profile.	1-10	Reverse osmosis- related water treatment technology, managing excess process water to regulatory requiremen ts.
Secondar y treatment	Relevant	9,207	About the same	Other, please specify Consisten t operation al profile.	31-40	This includes chemical precipitatio n-based water treatment and pH adjustment technologie s.
Primary treatment only	Relevant	442	About the same	Other, please specify Consisten t operation al profile.	1-10	Includes simple suspended solids removal through flocculation

						, settling or filtering.
Discharge to the natural environm ent without treatment	Relevant	8,188	Much higher	Other, please specify This includes large- scale pumping of rainwater stored in a mining pit. The water level in this pit is occasion ally relowered for operation al reasons.	21-30	We include volumes of "Other Managed Water" that were discharged to the environme nt without requiring treatment. The water quality of these discharges meets regulatory effluent standards.
Discharge to a third party without treatment	Not relevant Not					We do not discharge to third parties.
	relevant					applicable.

W1.2k

(W1.2k) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

	Emissions to water in the reporting year (metric tonnes)	Category(ies) of substances included	Please explain
Row 1	21,452	Nitrates Phosphates	Nitrates and phosphates are typically included in our standard suite of effluent analysis, however these are not aggregated across the company at the Corporate level. We have provided the total water discharge from operational circuits as well as Other managed water discharges.

W1.3

(W1.3) Provide a figure for your organization's total water withdrawal efficiency.

	Revenue	Total water withdrawal volume (megaliters)	Total water withdrawal efficiency	Anticipated forward trend
Row 1	4,501,000,000	61,631	73,031.4289886583	Unknown, we do not track this metric inhouse, it is of very limited value and hugely exposed to the vagaries of the gold price and the average grades of the ore bodies being mined.

W-MM1.3/W-CO1.3

(W-MM1.3/W-CO1.3) Do you calculate water intensity information for your metals and mining activities?

Yes

W-MM1.3a/W-CO1.3a

(W-MM1.3a/W-CO1.3a) For your top 5 products by revenue, provide the following intensity information associated with your metals and mining activities.

Product name	Numerator: Water aspect	Denominator	Comparison with previous reporting year	Please explain
Gold	Total water use	Ton of ore processed	About the same	4.7% higher due to slightly higher water withdrawals.

W1.4

(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

	Products contain hazardous substances	Comment
Row 1	No	Bullion is AGA's product and not considered as hazardous.

W1.5

(W1.5) Do you engage with your value chain on water-related issues?

Engagement	Primary reason for no	Please explain
	engagement	

Suppliers	No	Other, please specify A lack of internal resources and a sense there is limited scope for substituting suppliers which may have higher water footprints in their production process. Most products from our direct suppliers are deemed to have a small water footprint.	A lack of internal resources and a sense there is limited scope for substituting suppliers which may have higher water footprints in their production process. Most products from our direct suppliers are deemed to have a small water footprint.
Other value chain partners (e.g., customers)	No	Judged to be unimportant	Our customers are gold refineries which produce gold investment bars and secondary products for the jewelry and industrial sectors.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts? No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

	Water-related regulatory violations	Fines, enforcement orders, and/or other penalties	Comment
Row 1	Yes	Fines, but none that are considered as significant	At our Cuiaba mine in Brazil, an estimated 81m3 of tailings slurry leaked through a damaged drying bay liner of the mine's milling and flotation plant, entering a local water drainage channel and visibly impacted the Sabará River up to Sabará's city centre. The spill exceeded effluent limits for Manganese, Turbidity, and Total Suspended Solids and altered the Sabará River's quality from Class 2 to Class 3 over a period of 2 days. The mine was fined ~US\$72k by Municipal and State authorities. In addition, the Minas Gerais State Attorney initiated action against the mine, resulting in development of social and environmental projects in Sabará, donating 200 hectares of land towards conservation and undertaking an independent review of operational processes on the mine site.

W2.2a

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

Total number of fines

Total value of fines

72,000

% of total facilities/operations associated

9

Number of fines compared to previous reporting year

About the same

Comment

In March 2022, an estimated 81m3 of tailings slurry leaked through a damaged drying bay liner of the Cuiaba mine's milling and flotation plant, entering a local water drainage channel and visibly impacted the Sabará River up to Sabará's city centre. The spill exceeded effluent limits for Manganese, Turbidity, and Total Suspended Solids and altered the Sabará River's quality from Class 2 to Class 3 over a period of 2 days. The tailings flow was stopped immediately after discovery and sediment containment structures were put in place to limit the impact, after which clean-up of the watercourse(s) was initiated by a specialised external contractor. The event was communicated to the relevant authorities and representatives of downstream communities. The mine was fined ~US\$72k by Municipal and State authorities.

W3. Procedures

W3.1

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

	Identification and classification of potential water pollutants	How potential water pollutants are identified and classified
Row 1	Yes, we identify and classify our potential water pollutants	Our Water Managment Standard (availbale on the company website) sets out the requirements for operations to identify and classify potential water pollutants associated with its mining activities, including those that may have a detrimental impact on the water ecosystems or human health.

An a minimum, a baseline water quality risk assessment must be conducted as early as possible in the site's life, to identify actual and potential impacts on background water quality and neighbouring communities, arising from AGA activities. The water quality parameters assessed during this process must include an appropriate suite of physical, chemical and biological constituents. The identified local and regional water quality risks, in particular, potential noncompliance to host country usage requirements and regulatory or adopted effluent standards, must be clearly documented in the baseline assessment. Water quality management objectives must be developed in response to the potential risks identified in the baseline assessment, and appropriate preventive and/or corrective actions must be developed and implemented. Where effluent quality standards are not specified by host governments, the effluent guideline values (Water Use and Quality subsection) of the IFC Environmental, Health, and Safety Guidelines: MINING8 and/or in section 1.3 of the IFC Environmental, Health, and Safety Guidelines: GENERAL EHS GUIDELINES9 must be adopted as effluent quality targets.

W3.1a

(W3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

W-MM3.2/W-CO3.2

(W-MM3.2/W-CO3.2) By river basin, what number of active and inactive tailings dams are within your control?

Country/Area & River basin	Number of tailings dams in operation	Number of inactive tailings dams	Comment
Argentina Other, please specify GHAAS Basin 974	1	0	
Australia Other, please specify GHAAS Basin 174	2	1	

Brazil Sao Francisco	9	0	AGA's Tailings Disclosure currently stipulates seven active tailings dams. This is in the process of being updated to correspond to two new facilities that were commissioned.
Brazil Tocantins	2	0	AGA's Tailings disclosure currently stipulates one active tailings dam. This is in the process of being updated to correspond to one new facility that is being commissioned.
Ghana Other, please specify GHAAS Basin 1184	4	5	The TSF Disclosure currently stipulates a total of seven TSF's in Ghana. This will be updated to correspond to two new facilities that have been commissioned.
Guinea Niger	1	0	
United Republic of Tanzania Other, please specify Lake Victoria	1	1	

W-MM3.2a/W-CO3.2a

(W-MM3.2a/W-CO3.2a) Do you evaluate and classify the tailings dams under your control according to the consequences of their failure to human health and ecosystems?

	Evaluation of the conseque nces of tailings dam failure	Evaluation/Classif ication guideline(s)	Tailings dams have been classifie d as 'hazard ous' or 'highly hazardo us'	Please explain
Ro w 1	Yes, we evaluate the consequen ces of tailings dam failure	Australian National Committee on Large Dams (ANCOLD) Ordinance 70.389/17 - Mining	Yes, tailings dams have been classifie d as	Please see link below to AGA's Tailings Disclosure: https://www.anglogoldashanti.com/sustainability/en vironment/tailings-waste/

	National Agency,	'hazardo
	Brazil	us' or
	Ghana Minerals	'highly
	Commission (LI	hazardo
	2182)	us' (or
	Company-specific	equivale
	guidelines	nt)

W-MM3.2b/W-CO3.2b

(W-MM3.2b/W-CO3.2b) Provide details for all dams classified as 'hazardous' or 'highly hazardous'.

Та	iilings dam name/identifier CVSA TSF
Co	Duntry/Area & River basin Argentina Other, please specify GHAAS Basin 974
La	-48.389219
Lo	-68.245296
На	azard classification High / High C
Gı	uideline(s) used Australian National Committee on Large Dams (ANCOLD) South Africa SANS 10286
Та	illings dam's activity Active
Сι	urrent tailings storage impoundment volume (Mm3) 16.9
ΡI	anned tailings storage impoundment volume in 5 years (Mm3) 19.4
PI	ease explain

Tailings dam name/identifier CDS II TSF

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.984809

Longitude

-43.47218

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity Active

Current tailings storage impoundment volume (Mm3) 9.4

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Tailings dam name/identifier CDS 1 TSF

Country/Area & River basin Brazil Sao Francisco

Latitude

-20.019186

Longitude

-43.492902

Hazard classification High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3) 0.4

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

The CDS1 TSF is used for run-off control and as such, the tailings storage component remains unchanged.

Tailings dam name/identifier

Cuiaba TSF

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.866392

Longitude

-43.727225

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

10.5

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Cuiaba Open Pit

Country/Area & River basin Brazil

Sao Francisco

Latitude

-19.865922

Longitude

-43.748015

Hazard classification

High

Guideline(s) used Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity Active

ACTIVE

Current tailings storage impoundment volume (Mm3)

3

Planned tailings storage impoundment volume in 5 years (Mm3) 0.37

Please explain

Tailings dam name/identifier Calcine TSF

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.963472

Longitude

-43.83887

Hazard classification

High

Guideline(s) used Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

4.4

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Tailings dam name/identifier

Cocoruto TSF

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.974367

Longitude -43.830101

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

4.2

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Tailings dam name/identifier Rapaunha TSF

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.965827

Longitude

-43.842169

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

12.1

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

Tailings storage volume remains unchanged because the facility only forms part of the water management circuit.

Tailings dam name/identifier

MSG TSF

Country/Area & River basin

Brazil Tocantins

Latitude

-14.561475

Longitude -49.96026

-40.00020

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

17.1

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Tailings dam name/identifier

Geita TSF

Country/Area & River basin

United Republic of Tanzania Other, please specify Lake Victoria

Latitude

-2.845327

Longitude 32.174305

Hazard classification High

Guideline(s) used South Africa SANS 10286

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

49

Planned tailings storage impoundment volume in 5 years (Mm3)

89

Please explain

Tailings dam name/identifier Geita Old TSF

Country/Area & River basin United Republic of Tanzania

Other, please specify Lake Victoria

Latitude

-2.865192

Longitude

32.181134

Hazard classification

High

Guideline(s) used South Africa SANS 10286

Tailings dam's activity Inactive

Current tailings storage impoundment volume (Mm3)

1.9

Planned tailings storage impoundment volume in 5 years (Mm3)

1.9

Please explain

Tailings dam name/identifier

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

5.242913

Longitude -2.030525

Hazard classification High

Guideline(s) used Ghana Minerals Commission (LI 2182)

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3) 3.4

Planned tailings storage impoundment volume in 5 years (Mm3) 3.4

Please explain

Tailings dam name/identifier Block 1 Pit

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

5.242913

Longitude -2.030525

Hazard classification

Not applicable.

Guideline(s) used

Other, please specify Not applicable

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3)

5.3

Planned tailings storage impoundment volume in 5 years (Mm3)

5.3

Please explain

Tailings dam name/identifier Block 2 Pit

Country/Area & River basin Ghana

Other, please specify GHAAS Basin 1184

Latitude

5.238928

Longitude

-2.049145

Hazard classification Not applicable.

Guideline(s) used

Other, please specify Not applicable

Tailings dam's activity Inactive

Current tailings storage impoundment volume (Mm3)

12

Planned tailings storage impoundment volume in 5 years (Mm3) 12

Please explain

Tailings dam name/identifier GTSF

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

5.233688

Longitude -2.066815

Hazard classification High

Guideline(s) used

Ghana Minerals Commission (LI 2182)

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3)

41.9

Planned tailings storage impoundment volume in 5 years (Mm3) 41.9

Please explain

Tailings dam name/identifier Kokoteasua TSF

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

6.219122

Longitude -1.665141

Hazard classification

High

Guideline(s) used

Ghana Minerals Commission (LI 2182)

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3)

2.96

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

The Kokoteasua TSF is inactive and in the process of being re-mined.

Tailings dam name/identifier Pompora TSF

Country/Area & River basin Ghana

Other, please specify GHAAS Basin 1184

Latitude

6.22314

Longitude

-1.652891

Hazard classification

High

Guideline(s) used Ghana Minerals Commission (LI 2182)

Tailings dam's activity Inactive

Current tailings storage impoundment volume (Mm3)

31.85

Planned tailings storage impoundment volume in 5 years (Mm3) 31.85

Please explain

Tailings dam name/identifier South TSF

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

6.193716

Longitude

-1.718696

Hazard classification High

Guideline(s) used Ghana Minerals Commission (LI 2182)

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3) 45.5

Planned tailings storage impoundment volume in 5 years (Mm3) 45.5

Please explain

Tailings dam name/identifier Siguiri TSF

Country/Area & River basin

Guinea Niger

Latitude

9.408055

Longitude 11.518611

Hazard classification High

Guideline(s) used South Africa SANS 10286

Tailings dam's activity Active

Current tailings storage impoundment volume (Mm3)

Planned tailings storage impoundment volume in 5 years (Mm3) 175.3

175.5

Please explain

Tailings dam name/identifier CTD TSF

Country/Area & River basin Australia

Other, please specify GHAAS Basin 174

Latitude

-29.112102

Longitude

122.454137

Hazard classification

ANCOLD - Low

Guideline(s) used

Australian National Committee on Large Dams (ANCOLD)

Tailings dam's activity Active

Active

Current tailings storage impoundment volume (Mm3)

48

Planned tailings storage impoundment volume in 5 years (Mm3) 60

Please explain

Tailings dam name/identifier TSF 1

Country/Area & River basin

Australia Other, please specify GHAAS Basin 174

Latitude

-29.077058

Longitude 122.445451

Hazard classification ANCOLD - Low

Guideline(s) used Australian National Committee on Large Dams (ANCOLD)

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm3) 5.9

Planned tailings storage impoundment volume in 5 years (Mm3) 5.9

Please explain

Tailings dam name/identifier Tropicana

Country/Area & River basin

Australia Other, please specify GHAAS Basin 174

Latitude

-29.232246

Longitude

124.552217

Hazard classification ANCOLD - High C

Guideline(s) used

Australian National Committee on Large Dams (ANCOLD)

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

49.5

Planned tailings storage impoundment volume in 5 years (Mm3) 77.8

Please explain

Tailings dam name/identifier Pilha Sape Brazil

Country/Area & River basin Brazil Sao Francisco

Latitude

-20.019863

Longitude

-43.515473

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

3.2

Planned tailings storage impoundment volume in 5 years (Mm3)

Please explain

This tailings dam closure is in progress - hence 'planned tailings storage impoundment' has been left blank.

Tailings dam name/identifier

Brazil Grota 1

Country/Area & River basin

Brazil Sao Francisco

Latitude

-19.969827

Longitude

-43.479063

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

0.05

Planned tailings storage impoundment volume in 5 years (Mm3) 2

Please explain

Tailings dam name/identifier **BioX TSF Ghana** Country/Area & River basin Ghana Other, please specify GHAAS Basin 1184 Latitude 6.208647 Longitude -1.713755 Hazard classification High Guideline(s) used Ghana Minerals Commission (LI 2182) Tailings dam's activity Active Current tailings storage impoundment volume (Mm3) 0.31 Planned tailings storage impoundment volume in 5 years (Mm3) 0.7 **Please explain**

Tailings dam name/identifier

Beposo TSF Ghana (Phase 1)

Country/Area & River basin

Ghana Other, please specify GHAAS Basin 1184

Latitude

5.272624

Longitude -2.059733

Hazard classification High

Guideline(s) used Ghana Minerals Commission (LI 2182)

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

0.22

Planned tailings storage impoundment volume in 5 years (Mm3)

8.5

Please explain

Tailings dam name/identifier MSG Pit 5

Country/Area & River basin

Brazil Sao Francisco

Latitude

-14.577409

Longitude -43.748015

Hazard classification

High

Guideline(s) used

Ordinance 70.389/17 - Mining National Agency, Brazil

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm3)

0.44

Planned tailings storage impoundment volume in 5 years (Mm3)

1.2

Please explain

W-MM3.2c/W-CO3.2c

(W-MM3.2c/W-CO3.2c) To manage the potential impacts to human health or water ecosystems associated with the tailings dams in your control, what procedures are in place for all of your dams?

Procedure	Detail of the procedure	Please explain
Life of facility plan	A life of facility plan that identifies minimum specifications and performance objectives for the operating and closure phases A life of facility plan that includes an identification of potential chemical and physical risks from the design and construction phases A life of facility plan that considers post-closure land and water use A life of facility plan that details the financial and human resources needed	AGA has developed a Tailings Management Framework which provides guidance and standards for the different phases of development of Tailings facilities.
Acceptable risk levels	Establishment of site-level guidance and standards for acceptable risk levels based on an evaluation of potential chemical and physical risks Establishment of site-level guidance and standards for acceptable risk levels for third party safety in consultation with potentially affected communities, employees and relevant government bodies Establishment of site-level guidance and standards for acceptable risk levels across all life stages, including post-closure Establishment of company-wide standards for acceptable risk levels that follow a company policy to eliminate or minimize water-related risks associated with tailings dams	AGA has developed a comprehensive tailings management system to ensure that all of our tailings storage facilities meet company-wide criteria. The system is fleshed out in AGA's Tailings Management Framework which provides guidance and standards for the different phases of development of Tailings facilities.
Operating plan	An operating plan that is aligned with your established acceptable	AGA has developed a Tailings Management Framework (TMF) which provides guidance

	risk levels and critical controls framework An operating plan that includes the operating constraints of the dam and its construction method An operating plan that considers the consequences of breaching the operating constraints of the dam An operating plan that includes periodic review of the foundations and slope materials An operating plan that evaluates the effectiveness of the risk management measures and whether performance objectives are being met	and standards for the different phases of development of Tailings facilities. Facility- level Operating plans, in terms of the TMF and local legislation are developed and implemented for each facility.
Assurance program	An assurance program for the operating phase of the facility that details the procedures for the inspections, audits and reviews An assurance program for each phase of the facilities' life that includes the frequency of the various levels of inspections, audits and reviews An assurance program for each phase of the facilities' life that includes the scope of the various levels of inspections, audits and reviews An assurance program that details the competence requirements for the persons undertaking the inspections, audits and reviews An assurance program that includes an external audit covering the life of facility or the operating plans	Only professional geotechnical consultants are used for expert inspections, audits and reviews of AGA's tailings facilities. Engineers of record and independent tailings review boards have been appointed for facilities.
Change management process	Inclusion of a formal change management process for the construction phase of the facility Inclusion of a formal change management process for the operating phase of the facility	Each phase of Tailings facility development is documented to provide direction for design, construction, operation, decommissioning, closure and post closure.

	Inclusion of a formal change management process for the closure and decommissioning phase of the facility Inclusion of a change management process in the assurance program Inclusion of the results from external audits of operating plans or life of facility plans into the change management process	
Approval	Other, please specify Regional & Corporate Tailings Engineers.	The EHS and C-suite managers are not required to approve the operating plan, the life of facility plan, the assurance programme and the change management process. The operating plan and the life of facility plan are approved by the Regional and Corporate Tailings Engineers. The results of the assurance programme and change management process are presented to the Executives and C-suite managers annually. Per the Global Industry standard on Tailings management, the Chief Technical Officer carries the appointment of an accountable executive for TSFs.
Other management procedure	Other, please specify Inhouse Tailings Management Framework	AGA has developed a Tailings Management Framework which provides guidance and standards for the different phases of development of Tailings facilities. The AGA Tailings Management process incorporates four levels of review. At the most basic level, Tailings facility managers at each operation are responsible for day to day operations and adherence to the operating plan. Tailings management experts at Regional level are responsible for providing geotechnical advice to the operations. Each tailings facility is reviewed on a two to five year basis by an independent third party geotechnical consultant. The operational and regional tailings facility management is audited by the corporate

	tailings engineer to check compliance against the AGA Tailings management framework. Engineers of record and independent review boards have been appointed at all TSF's.
Other management procedure	The Global Industry Standard on Tailings management was published in 2020. AGA through the membership of the ICMM have committed to complying to the standard.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment? Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Value chain stage Direct operations

Coverage

Full

Risk assessment procedure

Other, please specify Internal risk management standard

Frequency of assessment

More than once a year

How far into the future are risks considered?

1 to 3 years

Type of tools and methods used

Enterprise risk management

Tools and methods used

ISO 31000 Risk Management Standard

Contextual issues considered

Water availability at a basin/catchment level Water quality at a basin/catchment level Stakeholder conflicts concerning water resources at a basin/catchment level Water regulatory frameworks Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered

Employees Investors Local communities Regulators Water utilities at a local level Other water users at the basin/catchment level

Comment

With regards to supply chain, suppliers are evaluated in regard to sustainability issues, but this does not currently include their water consumption. Our focus is on human rights, safety and environmental management systems.

W3.3b

(W3.3b) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

	Rationale for approach to risk assessment	Explanation of contextual issues considered	Explanation of stakeholders considered	Decision-making process for risk response
Row	Our Water Management		As an example, we	Core objectives for
1	Standard mandates the		work with other	operational water
	comprehensive understanding of		stakeholders in a	management are to:
	water risks within and beyond		number of water	 Set site-specific
	the mine site and the		forums in Brazil	targets for minimizing
	implementation of tailored		focused on	new water withdrawals
	management and monitoring		managing	from the ground and
	plans, that at site level are		community-level	surface water bodies
	supported by context-specific		water resources for	while seeking to
	water		the common good.	maximise the reuse of
	objectives and targets.		Our operations in	water
			the state of Minas	Prevent
	The company incorporates water		Gerais, which	contamination of water
	management risk within the		include the Cuiabá	resources by either
	company's Enterprise Risk		Complex and the	maintaining zero water
	management system (AuRisk).		Córrego do Sítio	discharge on sites, or
	Internal company knowledge		mines collaborate	by treating and
	gained over many years,		on joint water	releasing excess water
	comprising site knowledge and		stewardship	from the process
	understanding and the		through state and	circuit, which is typically
	experience and knowledge of		regional water	the case for high
	internal, regional and corporate		basin committees;	rainfall areas.
	staff, are utilised in the AuRisk		establishing	

assessments. Water risks	water consumption	
include environmental,	reduction targets,	
operational, stakeholder (where	and conducting	
applicable) and regulatory	water quality	
perspectives. All are evaluated	monitoring and	
per site, with risk information	spring	
being captured and updated in	preservation.	
AuRisk, with related risk		
mitigation actions being captured		
and tracked. Additionally, the		
company utilises the BowTie		
Risk assessment methodology		
and appropriate management		
systems e.g. ISO 14001 to aid in		
the understanding and		
management of specific risks		
(e.g. water pollution).		
Supply chain risks from water		
have been assessed as low, so		
suppliers are not covered in the		
detailed risk assessment		
process. Government		
databases, at the local, regional		
and national levels, are usually		
very useful and are drawn upon		
to the extent that we can,		
considering that some of our		
operations are in remote parts of		
underdeveloped countries.		

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

No

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

The company's risk matrix defines 6 levels of potential consequence and 6 levels of potential likelihood. There are also 6 types of risk category including financial. Potential threats with a risk index of 25 and higher are considered significant. In financial terms, this translates as a

threat with a consequence of between \$1m and \$10m and a Likelihood of 66% or greater (Very Likely or Almost Certain). Water is required to sustain gold recovery operations at the company's gold plants which process ore from mining operations. If water supply becomes constrained, gold production volumes could be affected in roughly equal proportions. The water risks considered are those with a potential risk index of 25 or greater, principally with a potential financial impact of between \$1m and \$10m.

W4.2b

(W4.2b) Why does your organization not consider itself exposed to water risks in its direct operations with the potential to have a substantive financial or strategic impact?

	Primary reason	Please explain
Row	Risks exist, but	At our current operations, we do not have any inherent water risks that
1	no substantive	could emanate in a substantive financial or strategic impact. Furthermore,
	impact	our water management standard mandates the comprehensive
	anticipated	understanding of water risks and the implementation of tailored
		management and monitoring plans, supported by context-specific
		objectives and targets.

W4.2c

(W4.2c) Why does your organization not consider itself exposed to water risks in its value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact?

	Primary reason	Please explain
R	ow Risks exist, but no	There are immaterial volumes of water contained in purchased
1	substantive impact	products, being limited to liquid reagents that are purchased and
	anticipated	where water is used as a carrier (e.g. acids, peroxide, liquid cyanide,
		etc.).

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity

Efficiency

Primary water-related opportunity

Other, please specify Water storage opportunity

Company-specific description & strategy to realize opportunity

Project: Water storage at Geita Gold Mine

At Geita Gold Mine, we have embarked on seeking out water storage opportunities to reduce water intake from Lake Victoria (which is a permitted water source for the mine). This is an on-going water savings project which seeks to utilize on-site water storage facilities such as the lakes in the old mined-out pits of Geita Hill West as well as Lone Cone. As such, these water storage facilities are utilized as the raw/bulk water supply for the mine.

Since the implementation, we are able to annually reduce the operations water intake from the Nungwe Bay (Lake Victoria), reducing the overall pumping and reducing water usage from a national water resource. The mine is successfully recycling water from the tailings storage facilities and using water from the storage pits mentioned previously for the production circuit. The mine does not utilise water from Lake Victoria for production but conducts minimal pumping to keep the pipelines open and to supply communities with water through the offtake points.

Geita mine continued to reduce its water withdrawals from external lakes and dams, with water harvested from the site's pits and sumps constituting more than 50% of its new water withdrawals during the year.

Estimated timeframe for realization

1 to 3 years

Magnitude of potential financial impact

Medium-high

Are you able to provide a potential financial impact figure? No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

The utilization of the pits as water storage facilities have resulted directly in the following savings for the operation:

1. Reduction in pumping costs - savings in diesel and reduction in GHG emissions, also reduction in pump maintenance due to the reduced pumping.

2. The mine has reduced water abstraction from a national water resource and contributed to the conservation of water.

Type of opportunity

Efficiency

Primary water-related opportunity

Improved water efficiency in operations

Company-specific description & strategy to realize opportunity

Project: Tropicana Gold Mine Site Wide Water Optimization

Our Tropicana Gold Mine in Australia continued with its site wide water optimization project which uses less water from aquifers and includes the utilization of water by preference i.e., water from higher efficiency bores that have a lower energy consumption but still higher water yields. The site also embarked on using variable speed technology for the pumps which resulted in a reduction in energy usage and the ability to switch off most of the direct diesel generator bores. At the moment, bores on the electricity supply grid are only being used.

The strategy used the site water balance to focus on making the site water usage more efficient from both a demand and supply perspective with an additional focus on lowering maintenance. This was done by:

1) Removing low efficiency bores from water supply borefields, resulting in lower energy consumption and lower maintenance.

2) Equipping all water supply bores with variable speed technology to optimize water yields and using less energy.

3) Increasing the pumping from bore fields with a preferred water quality, which is more efficient for processing plant extractive chemistry (lower chemical dosage and higher pH levels).

4) Increasing water recovery from the recovery bores for a recycling perspective.

5) Increasing water recovery from TSF decant pumps for a recycling perspective.

The above has resulted in:

a) recycled water increases of >25%

b) a reduction of low efficiency bores by >50%

c) a reduction in cyanide dosage in the plant by ~35%

d) a reduction in diesel consumption up to 35% in variable speed drive bores.

Estimated timeframe for realization

Current - up to 1 year

Magnitude of potential financial impact

Medium

Are you able to provide a potential financial impact figure? No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact

In financial terms, savings estimates are derived from the following:

- 1) Reduction in cyanide dosing in the Processing Plant.
- 2) Reduction in diesel consumption for pumping water.
- 3) Reduction in generator services for 'mothballed' generators.
- 4) Reduction in bore pump maintenance for replacing pumps and infrastructure.

Type of opportunity

Other

Primary water-related opportunity

Other, please specify Risk Mitigation

Company-specific description & strategy to realize opportunity

Iduapriem Gold Mine: Waste rock facility encapsulation

During 2021, rehabilitation of Iduapriem's Block 1 waste rock facility commenced. The waste rock facility that required active treatment of low pH seepage water, was reworked to encapsulate acid generating rock more effectively, and to reduce rainfall infiltration.

Approximately 37 hectares of the waste-rock dump has been rehabilitated with roughly 6 hectares remaining. This has reduced the exposed surface area and allows less infiltration, hence improving the average pH.

The pH of the Surface Water Six raw feed is projected to meet the regulatory effluent discharge limit soon after the completion of the rehabilitation of the entire waste rock dump at Block 1 North.

Estimated timeframe for realization

1 to 3 years

Magnitude of potential financial impact

Low-medium

Are you able to provide a potential financial impact figure?

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

We are mitigating the regulatory risk, not having to pay possible fines that may arise and are therefore unable to provide a potential financial impact figure.

Type of opportunity

Other

Primary water-related opportunity

Other, please specify Groundwater treatment

Company-specific description & strategy to realize opportunity

Project: In-situ groundwater remediation at Geita Gold Mine

AngloGold Ashanti has rolled out a novel in-situ water remediation project at the Geita mine in Tanzania, working with a local Tanzanian/German joint venture partner that will use a process where naturally occurring bacteria directly remediates sulphate in groundwater. The technology – known as In-situ TSF Bioremediation – is ground-breaking. The AngloGold Ashanti team worked to adapt it to the mining context, making them the first to introduce it on a mine site. The fact that the remediation takes place at the site of contamination is key, as it means the process has a very low environmental impact. It can be used instead of more intrusive water remediation solutions such as constructing a water processing plant, digging trenches and pumping the water back to a TSF.

The process uses naturally occurring bacteria in the ground water to remove contaminants such as sulphate and nitrate and because the bacteria is in-situ, the process, once established, will become self-sustaining after a few years. For the process to work, a carbon source – in this instance, vegetable oil – is introduced to the impacted area, providing food for the micro bacteria. A combination of sulphur, sulphate and nitrate reducing bacteria carry out the remediation.

After acclimatising, the bacteria convert the nitrates to nitrogen gas and precipitate the sulphates to physical sulphides. Vegetable oil is added over the course of a few months, while the team determines how much, and how often, this needs to take place in order to sustain the contamination busting bacteria. This process will, over time, build a barrier that prevents the spread of sulphate enriched water beyond the reaction zone.

The in-situ groundwater bioremediation project in Tanzania progressed in 2022 with the joint venture partnership between Sensatec Tanzania and a German-based technology provider. In phase one of the project, which spans a 100m target area downstream of the Geita TSF, seven injection boreholes were installed in addition to upstream and downstream monitoring bores. The first round of reagent injection was completed, and initial process monitoring showed promising reductions in targeted parameters.

Estimated timeframe for realization

1 to 3 years

Magnitude of potential financial impact

Medium-high

Are you able to provide a potential financial impact figure?

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact

We are mitigating the regulatory risk, not having to pay possible fines that may arise as a result of the pollution plume which has been affecting downstream farmers. We are therefore unable to provide a potential financial impact figure.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?

Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

	Scope	Content	Please explain
Row	Company-	Other, please	We make all our company policies and standards available
1	wide	specify	on our website as a result of our commitment to
		Incorporated	transparency and so that stakeholders can keep us
		within Group	accountable to our commitments. Our policies and

Sustainability	performance standards apply across the entire company
policy	because people are the same everywhere. They incorporate
	scope for more stringent local requirements but set a
	minimum standard across the entire organization. We have a
	Group Sustainability policy that includes water, and a Water
	Management Standard that sets out specific requirements
	regarding water management.
	Sustainability policy

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization? $$\mathrm{Yes}$$

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

Position of individual or committee	Responsibilities for water-related issues
Other, please specify Board Social, Ethics and Sustainability	The Board Social, Ethics and Sustainability Committee has this responsibility. It has an overview of sustainability policy and strategy, including water. The committee is one of five committees that assist the Board in discharging its responsibilities. The functioning of the committees is guided by their terms of reference which are approved by the Board and reviewed annually or as required. During 2022, all Board committees were chaired by independent non- executive directors.

W6.2b

(W6.2b) Provide further details on the board's oversight of water-related issues.

	Frequency that water-related issues are a scheduled agenda item	Governance mechanisms into which water-related issues are integrated	Please explain
Row 1	Scheduled - all meetings	Monitoring implementation and performance Setting performance objectives	Water use and intensity performance data and surface & groundwater quality risks for the company, its operating units and important developments in the sphere of water (such as legislation changes) are standard content in the reports tabled before the Board Social, Ethics and Sustainability Committee. The reports outline the rationale for observed trends in performance data and discuss any developments in the water

management that may impact on the company,
including management's planned response. The
Committee may in its review of the information
presented and its deliberations, direct the company
along a course of action.

W6.2d

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

	Board member(s) have competence on water-related issues	Criteria used to assess competence of board member(s) on water- related issues
Row 1	Yes	 Dr. Kojo Busia Chairperson of the Social, Ethics and Sustainability Committee Independent Non-Executive Director PhD, MA, BA Dr Busia has over 25 years of professional experience in African natural resources governance and management working at both bilateral and multilateral organisations. He recently held the position of chief of the Natural Resources Management Section, Technology, Climate Change and Natural Resource Management Division, at the United Nations Economic Commission Africa (UNECA).

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s) Other, please specify Executive Committee

Water-related responsibilities of this position

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

The company's Executive Committee is the top tier of management and are accountable to the Board of Directors. Executive Committee members include the CEO, the CFO and the Chief Officers (COs) responsible for Operations (COO), Sustainability,

Technical matters, Human Resources, Strategy & Business Development and Legal & Governance. Some COs have more direct accountability for tracking and/or managing water-related issues such as implementing projects and/or tracking legislation or other developments and shaping the company strategies to mitigate water management risk(s).

Quarterly reports to the Board on Water Withdrawals, Water Withdrawal Intensity are provided. In addition, any material Water quality related issues/risks and mitigation actions are communicated.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

	Provide incentives for management of water- related issues	Comment
Row	No, not currently but we plan	We may consider re-introducing incentives to C-suite
1	to introduce them in the next	employees in the near future. In the past, water related incidents
	two years	formed part of the Deferred Share Plan for reportable
		environmental incidents.

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, trade associations Yes, other

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

At Country level, engagement on water policy is channelled through mining associations e.g. Minerals Council of Australia, Ghanaian Chamber of Mines.

At International level, we provide input into the discourse on water through our membership of the International Council on Mining and Metals (ICMM). In some cases, the ICMM represents its members with on UN-level policy development e.g. the Minamata Convention on Mercury.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

U AGA-Annual Financial Statement 2022.pdf

 \square Please see attached Annual Financial Statement, published on AGA's website (link below for ease of navigation):

https://reports.anglogoldashanti.com/22/wp-content/uploads/2023/04/AGA-AFS22.pdf

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

	Are water- related issues integrated?	Long-term time horizon (years)	Please explain
Long-term business objectives	Yes, water- related issues are integrated	5-10	The replacement of mined out orebodies through the continued extension of mine life, or the development of greenfield mining projects, is essential to the long term survival of any mining enterprise. Projects in dry climates may be water-constrained, impacting their operating scale and profitability. On the other hand, projects in very wet climates, will need to consider treatment and release of excess and sometimes impacted water. This requires additional project capital and operating costs over the productive life of the operation. In both scenarios, water availability and water quality management, plays a critical role in the long-term business success.
Strategy for achieving long-term objectives	Yes, water- related issues are integrated	5-10	In support of the company's long-term business objectives, we constantly review water risks and opportunities at the current mining operations and assessing water resource risks and opportunities is a critical part of our feasibility study approvals. These typically span aspects such as water use licensing, hydrology and geohydrology, water balance changes (shortages or excesses) and the potential need to either import additional water or to treat and release excess water. Aligned to this, we undertake periodic review of physical weather changes forecasted as a result of climate change - to consider the .
Financial planning	Yes, water- related issues are integrated	5-10	Any water-related financial resource as included in annual operating expense budgets and/or Capex plans. OPEX requirements are integrated into departmental budgets, e.g. water treatment costs are typically

incorporated into metallurgical processing plant budgets
and water quality monitoring and analysis costs
generally included in the environmental management
department budgets. Capital expenditure for water-
related infrastructural enhancements are managed
within the company's capital standard budgeting and
implementation tracking process.

W7.2

(W7.2) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

Water-related CAPEX (+/- % change) 150

Anticipated forward trend for CAPEX (+/- % change)

-120

Water-related OPEX (+/- % change)

5

Anticipated forward trend for OPEX (+/- % change)

0

Please explain

It is not possible to cleanly extract "water-related expenditure" from our accounting systems since water management is integral to many business activities. We are unable to meaningfully forecast changes in water-related CAPEX expenditure as these are 'lumpy', being subject to periodic approval(s) of feasibility studies - percentage data provided is a rough estimate. There are sometimes deferred or the investment decisions are phased. The primary water capital expense over 2022 was a modular water treatment plant installed at one of our Brazilian operations to supplement the capacity of and partially replace an older water treatment plant. Comparatively minor water infrastructure-related enhancements are being budgeted for in 2023's Capex schedule. OPEX expenditure is estimated to be slightly increased on 2021 due to inflationary pressures on reagent and energy pricing at operations treating influent and/or effluent waters. This inflation trend is expected to continue.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

	Use of scenario analysis	Comment
Row 1	Yes	Water-related risks and opportunities change over time, necessitating some scenario-based approach to assessing and water risk - in particular, from a physical climate change perspective - which may impact on water availability and demand at operations level. Using recent climate data and projections for worst-case scenario projections (RCP 8.5), operational teams undertook a review of climate-driven water risks into the 2030s, focusing – to assess whether additional water resource management capability (including new infrastructure), is likely to be needed as adaptation measure. This has been the primary form of scenario analysis used for water resource risk management. While we have undertaken assessments using water tool e.g., WRI Aqueduct, these have proved to add little practical value beyond what is already available at mine-site level.

W7.3a

(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization's business strategy.

Type of scenario analysis used	Parameters, assumptions, analytical choices	Description of possible water- related outcomes	Influence on business strategy
Row Climate- 1 related	Water related outcomes were identified as part of AGA's climate change strategy. When planning our response to individual physical climate risks, we considered risk management actions that can be applied to many areas of the business – including informational, governance and policy-related, operational changes and physical modifications. The latest climate data and projections, for a range of climate hazards, were considered to determine how risks may change out to the 2030s, focusing on the worst case scenario – RCP 8.5 –	Possible water- related outcomes are mapped out in our published Climate Change Report at county and site level as follows: AUSTRALIA: 1) 23% increase in maximum 1-day precipitation totals for both Sunrise Dam and Tropicana. 2) 12% and 25% increase in maximum 5-day precipitation totals for Sunrise Dam and Tropicana,	Influence on business strategy is outlined in our published Climate Change report at country level as follows (coinciding with the 'possible water-related outcomes'): AUSTRALIA: 1 & 2) Supply chain disruption, particularly bulk reagents, due to extreme rainfall/flooding. 3) Lightning strikes and fires during storm events. GHANA, TANZANIA & GUINEA: 1 & 2) Geotechnical instability and erosion (e.g. pit wall, mine infrastructure,

		reencetively	Tailinga Charage Facility
	which would require the most	respectively.	
	robust adaptation measures.	3) Tropical cyclones	(ISF) landforms/ structures,
		are projected to	rehabilitated areas, waste
	Quantitative modelling and	decrease in	rock dumps, filtered tailings,
	risk assessments were	frequency but	etc.).
	undertaken.	increase in intensity.	3) Failure of rehabilitation
			objectives and limited
		GHANA, TANZANIA	regeneration of habitats.
		& GUINEA:	4) Community and
		1) Increase in	stakeholder concerns about
		maximum 1-day	reduced water availability.
		precipitation totals.	
		2) Increase in	BRAZIL:
		maximum 5-day	1 & 2) Geotechnical
		precipitation totals.	instability and erosion (e.g.
		3) At all mine sites	pit wall, mine infrastructure,
		current water stress	TSF landforms/structures,
		is 'high' and this is	rehabilitated areas, waste
		not projected to	rock dumps, filtered tailings,
		change by 2030 for	etc.).
		Geita (Tanzania),	3) Reduction in
		Iduapriem (Ghana)	groundwater/aquifer
		and Siguiri	recharge/decrease in water
		(Guinea).	availability from boreholes,
		4) For Obuasi	leading to water availability
		(Ghana), projections	issues/intervention around
		indicate an increase	water abstraction and use.
		in water stress by	Community concern about
		up to twice more	elevated dust
		than current risk.	emissions/reduced ability to
			undertake dust suppression
		BRAZIL:	activities.
		1) 14% and 25%	
		increase in	ARGENTINA:
		maximum 1-day	1 & 2) Extreme precipitation
		precipitation totals	leading to potential
		at Serra Grande and	challenges in pollution
		AGA Mineração,	control.
		respectively.	3) Potential community and
		2) 10% and 19%	stakeholder concerns about
		increase in	reduced water availability.
		maximum 5-day	Changes in water
		precipitation totals	management regimes.
		at Serra Grande and	
		AGA Mineração,	Please see pages 19 and 20
		respectively.	of AGA's published Climate

	3) Current water	Change report.
	stress at these	
	mines range	
	between 'low-	
	medium' and 'high'	
	and this is not	
	projected to change	
	by 2030.	
	ARGENTINA:	
	1) 22% increase in	
	maximum 1-day	
	precipitation totals.	
	2) 20% increase in	
	maximum 5-day	
	precipitation totals.	
	3) Current water	
	stress at the mine is	
	'medium-high' and	
	this is not projected	
	to change by 2030.	
	Please see pages	
	19 and 20 of AGA's	
	published Climate	
	Change report.	

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, and we do not anticipate doing so within the next two years

Please explain

The relevance of an internal water price has not been assessed, principally because water is recognized as being an environmental and social good that is strongly governed by the basin, regulatory and social context. As such, the 'value' of water is unique to each location (and context) and does not lend itself to being valued with a common 'price' across the organisation.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

	Products and/or services classified as low water impact	Definition used to classify low water impact	Please explain
Row 1	Yes	Lifetime water consumption demand of product(s) use.	Downstream use of our product (gold) is as a store of wealth (in refined gold bars), aesthetic and cultural value (jewelry and other art objects), and low water impact technologies e.g. as a signal conductor in electronics, and specialised reflective surfaces (James Webb telescope).

W8. Targets

W8.1

(W8.1) Do you have any water-related targets?

Yes

W8.1a

(W8.1a) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

	Target set in this category
Water pollution	Yes
Water withdrawals	Yes
Water, Sanitation, and Hygiene (WASH) services	Yes
Other	

W8.1b

(W8.1b) Provide details of your water-related targets and the progress made.

Target reference number Target 1

Category of target Water pollution

Target coverage Company-wide (direct operations only) **Quantitative metric** Other, please specify Zero significant water-related incidents Year target was set 2022 **Base year** 2022 **Base year figure Target year** 2022 **Target year figure** 0 **Reporting year figure** 2 % of target achieved relative to base year Target status in reporting year Expired

Please explain Regrettably, 2 Reportable process water-related spills occurred during 2022.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

Disclosure	Data verified	Verification	Please explain
module		standard	

W1 Current	Water withdrawals	ISAE 3000	Limited assurance is provided by an
state	and Water		external assurer annually, testing alternate
	discharges.		sites over a period of time.

W10. Plastics

W10.1

(W10.1) Have you mapped where in your value chain plastics are used and/or produced?

	Plastics mapping	Please explain
Row 1	Not mapped – and we do not plan to within the next two years	

W10.2

(W10.2) Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?

	Impact assessment	Please explain
Row 1	Not assessed – and we do not plan to within the next two years	

W10.3

(W10.3) Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

	Risk exposure	Please explain
Row 1	Not assessed – and we do not plan to within the next two years	

W10.4

(W10.4) Do you have plastics-related targets, and if so what type?

	Targets in place	Please explain
Row 1	No – and we do not plan to within the next two years	

W10.5

(W10.5) Indicate whether your organization engages in the following activities.

	Activity applies	Comment
Production of plastic polymers	No	
Production of durable plastic components	No	

Production / commercialization of durable plastic goods (including mixed materials)	No	
Production / commercialization of plastic packaging	No	
Production of goods packaged in plastics	No	
Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services)	No	

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

	Job title	Corresponding job category
Row	Vice President: Environment and Industry	Other, please specify
1	Associations	Group Vice President; Head of Discipline

SW. Supply chain module

SW0.1

(SW0.1) What is your organization's annual revenue for the reporting period?

	Annual revenue
Row 1	

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

	Are you able to provide geolocation data for your facilities?	Comment
Row 1		

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

SW3.1

(SW3.1) Provide any available water intensity values for your organization's products or services.

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

	I understand that my response will be shared with all requesting stakeholders	Response permission
Please select your submission options	Yes	Public

Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

No

Please confirm below

I have read and accept the applicable Terms